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Sampling the Materials Space for Conventional
Superconducting Compounds

Tiago F. T. Cerqueira, Antonio Sanna, and Miguel A. L. Marques*

A large scale study of conventional superconducting materials using a
machine-learning accelerated high-throughput workflow is performed,
starting by creating a comprehensive dataset of around 7000 electron–phonon
calculations performed with reasonable convergence parameters. This dataset
is then used to train a robust machine learning model capable of predicting
the electron–phonon and superconducting properties based on structural,
compositional, and electronic ground-state properties. Using this machine,
the transition temperatures (Tc) of approximately 200 000 metallic compounds
are evaluated, all of which are on the convex hull of thermodynamic stability
(or close to it) to maximize the probability of synthesizability. Compounds
predicted to have Tc values exceeding 5 K are further validated using
density-functional perturbation theory. As a result, 541 compounds with Tc

values surpassing 10 K, encompassing a variety of crystal structures and
chemical compositions, are identified. This work is complemented with a
detailed examination of several interesting materials, including nitrides,
hydrides, and intermetallic compounds. Particularly noteworthy is LiMoN2,
which is predicted to be superconducting in the stoichiometric trigonal phase,
with a Tc exceeding 38 K. LiMoN2 has previously been synthesized in this
phase, further heightening its potential for practical applications.
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1. Introduction

Superconducting materials are used in a
growing number of applications crucial to
technological, societal, and economical de-
velopment. These include low magnetic
field systems like cables, transformers, and
motors, qubits for quantum computers and,
more significantly, high field devices for
medical diagnostic, accelerators in particle
physics and plasma confinement for fusion
technology.[1,2] Hundreds of superconduct-
ing material families have been discovered,
among which the copper-oxides[3] with crit-
ical temperatures (Tc) exceeding 100 K,
MgB2 with Tc=39 K,[4] the ferro-pnictides
reaching a Tc of 55 K,[5,6] and more recently
the high pressure hydrides,[7–10] with criti-
cal temperatures close to room values.

It is then, at a first sight, surprising that
some of the largest experiments in physics,
like the Large-Hadron Collider at CERN
or the International Thermonuclear Exper-
imental Reactor (our biggest hope of de-
veloping a source of clean and nearly in-
finite energy), rely on superconductors —
Nb–Ti alloys and Nb3Sn — that were devel-
oped half a century ago and were already

in use in the 1970s.[11] The reason is that, despite their re-
markable superconducting properties, most high-Tc materi-
als are extremely brittle and therefore poorly suited to make
the many kilometers of wire or tape required.[2,12] In ad-
dition, cuprates suffer from the grain boundary problem,
which makes the construction of long stable cables com-
plex and expensive. In contrast, Nb–Ti forms ductile alloys,
which are well suitable for fabricating Cu-stabilized multi-
filamentary conductors, but have a low critical temperature.
However, Nb is an expensive chemical element of limited
availability.

In view of this situation, it is urgent to discover new industry-
friendly materials that may resolve, or at least alleviate, the cur-
rent dependence of the industry on Nb-based superconductors.
Over the last years several high-profile projects were aimed to dis-
cover new superconductors, including a large-scale four-year pro-
posal financed by the Japanese government.[13] The overwhelm-
ing majority of the candidate systems turned out to be non-
superconducting, and only 100 new superconducting materials
were found, mostly iron-based or analogous to them. This gives
a clear indication of the low time- and cost-effectiveness of the
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traditional experimental trial-and-error search for superconduc-
tors.

A targeted approach where synthesis is only attempted fol-
lowing an accurate theoretical prediction could be more effi-
cient. This is possible for conventional superconductors, that
are well understood, and for which predictive quantitative the-
ories exist.[14–18] Unfortunately search has been mostly fo-
cused on selected chemical compositions and small families of
compounds,[10,19–23] while very few large scale studies of super-
conductors can be found in the literature. In 2022, Hoffmann
et al. studied the whole family of antiperovskites,[24] perform-
ing electron-phonon calculations for more than 400 compounds.
This was followed by a similar work on full-Heusler materials
comprising more than 1000 candidate systems, and discovering
a total of eight hypothetical materials with critical temperatures
above 10 K.[25] In spite of relatively large number of chemical
compositions studied, these works were however strongly lim-
ited in terms of the possible crystal structures.

In a seminal work, Choudhary and Garrity[26] overcame this
limitation by devising a multi-step, machine-learning accelerated
workflow for discovering conventional superconductors. They
conducted electron–phonon coupling calculations for 1058 com-
pounds with varying structures and chemical compositions, lead-
ing to the identification of 105 dynamically stable materials with
Tc above 5 K, but only 17 with Tc above 10 K and having dis-
tances to the hull of stability smaller than 50 meV/atom. The
work of Choudhary and Garrity used a small 2 × 2 × 2 q−point
mesh to generate data for training, but k − and q −grids were
then converged for the best candidates predicted by the ma-
chine. A similar approach was then also applied to 2D systems,
unveiling 34 compounds with a transition temperature above
5 K.[27] We strongly believe that this approach is the right path
to follow, because it targets the complete space of possible
materials.

There have been a few other machine learning studies of
superconductors,[28–30] most of them based on the SuperCon
database.[31] Unfortunately, SuperCon contains solely the com-
position of the compound and not its crystal structure, limiting
the use of machine learning to simple compositional models.
(Note that recently a subset of the SuperCon structures has been
identify,[32] alleviating this shortcoming.) Furthermore, the com-
pounds present in SuperCon are considerably biased towards
cuprates and iron-based materials, making the training of gen-
eral models difficult.

In this work, we take a step further by creating a larger and
better converged dataset of calculated electron–phonon and su-
perconducting properties that is used to train a robust machine-
learning model for predicting the transition temperature of con-
ventional superconductors. This model is then used to sieve
through almost 200 000 compounds to uncover a large number
of conventional superconductors with high-Tc.

The remainder of this article is structured as follows: Section 2
explains our general strategy and workflow. The training dataset
is described and analyzed in Section 3, providing insights about
the properties of conventional superconductors and their statisti-
cal distribution. Section 4 is devoted to our predictions, present-
ing the most interesting compounds we have found and provid-
ing a full characterization of a few noteworthy materials. Finally,
we present our conclusion in Section 5.

2. Strategy and Workflow

Our search workflow is summarized in Figure 1 and commences
with the creation of a large dataset of electron–phonon calcula-
tions. The selection of materials for this dataset is a critical step
that requires careful consideration. On the one hand, the choice
should aim to minimize possible biases in the representation of
chemical elements and crystal structures, ensuring a diverse and
representative sample. On the other hand, the computational ef-
fort required for electron–phonon calculations increases steeply
with the number of atoms in the unit cell, necessitating thorough
assessment of computational feasibility.

We start with the stable or nearly stable compounds (below
50 meV/atom from the convex hull of thermodynamic stability)
from the Alexandria database of Refs. [33, 34]. We discarded
semiconductors, insulators, and any material with nonzero mag-
netic moments as these should not host a stable superconducting
state with large critical temperature. Also, metals with a very low
density of states at the Fermi level (DOS(EF)) are less relevant and
were filtered out.

In addition to these, somehow straightforward, selection cri-
teria, we added a further filter by including only materials with
an estimated Debye temperature (ΘD) above a cutoff of 300 K.
Although there is no simple proportionality between the Debye
temperature and Tc, it is a fact that the best superconductors have
relatively large phonon frequencies. As the Alexandria dataset
does not include the values for the Debye temperature, these were
estimated using a crystal-graph neural network (see Section 6).
We note that the cutoffs in DOS(EF) and ΘD were already used in
Refs. [26,34].

For numerical efficiency reasons, we also limited the train-
ing set to compounds with ⩽8 atoms in the primitive unit cell,
and space group number ⩾100 (including most tetragonal, and
all trigonal, hexagonal, and cubic lattices, but excluding the or-
thorhombic, monoclinic, and triclinic systems).

Subsequently, the entries were arranged based on Pareto fronts
within the DOS(EF) and ΘD parameter space, and the calculation
of the electron–phonon interaction was performed with density-
functional perturbation theory[35–37] (DFPT) in that specified se-
quence (refer to Section 6). To increase the diversity of the dataset,
we added entries with few atoms in the unit cell (⩽5) from higher
Pareto fronts. This comprises a space of 23410 materials, out of
which we performed a total of 6545 DFPT calculations. Finally,
we also included the 50 materials already calculated by some of
us in Ref. [34], and the datasets of Heuslers from Ref. [25] and of
inverted perovskites from Ref. [24] (295 and 168 materials, re-
spectively). These later two were originally calculated with the
LDA functional[38] and with k and q-point sets specifically chosen
for those crystal structures. In order to make the data compatible
with our current approach, the ground-state and the electron–
phonon coupling constants were recalculated with the parame-
ters presented in Section 6. Note that a table containing a sum-
mary of all our DFPT calculations can be found in the Supporting
Information (SI).

Our training dataset (DS-A) contains results for 7217 dynam-
ically stable materials, of which 2426 have a TAllen-Dynes

c (Tc es-
timated with the Allen-Dynes formula[39]) larger than 1 K, 773
larger than 5 K, and 272 larger than 10 K. This dataset, ana-
lyzed in detail in Section 3, was used to train machine-learning
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Figure 1. Sketch of our search workflow. We start from a large database of crystal structures and Density Functional Theory calculations. From this we
select and compute (via DFPT with normal precision) a training database (DS-A) whose superconducting properties are computed from first principles.
DS-A is used for training a machine learning model. The machine is used to identify promising materials, which are simulated and included into a second
dataset (DS-B). We used the materials in DS-A for a statistical study (as these are not biased by the machine-learning model) and select the best systems
among all the computed materials (DS-A + DS-B) for a more detailed analysis.

models for predicting the logarithmic average of the phonon fre-
quencies 𝜔log, the electron-phonon coupling constant 𝜆, and the
superconducting transition temperature. The models considered
structural, compositional, and ground-state features, and we em-
ployed modnet[40] and alignn[41] using various inputs, outputs,
and training strategies. Our most successful network was a mod-
net model using as input features the structure and composition
of the compound together with DOS(EF) and ΘD (see Section 6).
The output was the vector composed of 𝜔log, 𝜆, and Tc and the
cost function was the linear combination (with equal weights) of
the error in these three quantities.

We applied this machine to predict the transition temperature
of three further datasets, that we refer together as our B dataset
(DS-B). As before, we excluded magnetic and semiconducting
compounds. We note that our model gives us access to two dif-
ferent estimations of Tc, one predicted directly and the other cal-
culated from the predicted values of 𝜆 and 𝜔log. In order to min-
imize the number of false negatives, we selected for electron–
phonon calculations compounds for which at least one of the two
predicted values of Tc was larger than 5 K.

(i) First, we selected metals with a maximum of eight atoms
in the primitive unit cell, including trigonal, hexagonal,
and cubic systems, present in the database[33,34] within
50 meV/atom from the convex hull (amounting to a material
space of 108771 entries). We note that our DS-A is actually
a subset of this set of materials. The only difference is that
here, we removed the restrictions on the minimum DOS(EF)
and ΘD. We obtained with DFPT 198 new dynamically sta-
ble compounds, of which 106 had a transition temperature
above 5 K. This resulted in a success rate of 54%.

(ii) In this case, we relaxed the thermodynamic stability con-
strain, and allowed for compounds with a maximum of five
atoms in the primitive unit cell, including trigonal, hexago-

nal, and cubic systems, present in the database[33,34] between
50 and 100 meV/atom from the convex hull. This amounted
to a material space of 65288 compounds. We found 721 dy-
namically stable phases, from which 549 had a transition
temperature above 5 K. This resulted in a success rate of
76%.

(iii) To investigate lower symmetry compounds, we selected or-
thorhombic and tetragonal compounds with a maximum
of five atoms in the primitive unit cell present in the
database[33,34] within 50 meV/atom from the convex hull.
This amounted to a material space of 17469 compounds. We
found 114 dynamically stable phases, of which 72 had a tran-
sition temperature above 5 K. This resulted in a success rate
of 63%.

Together, we searched a material space of 191528 compounds
with our machine learning model, performing DFPT calculations
for 1032 materials. The results showed an average success rate to
find compounds with Tc > 5 K of 70%. We note that in the ini-
tial dataset DS-A only around 10% of the compounds were found
to have Tc > 5 K, proving the efficiency of our approach. Alto-
gether, the utilization of the machine learning model resulted in
a 23-fold acceleration of the search process, factoring in the time
required for training set creation.

We estimated the precision on Tc of our machine in DS-B with
a mean of Tc = 7.63 K, obtaining a mean absolute error of Tc =
2.94 K. To put this figure into perspective, we can consider two
hypothetical machines: i) A machine that predicts Tc = 0 K for
all entries would yield a mean absolute error of 7.63 K, which
corresponds to the mean value of the test set; ii) Alternatively, a
machine that predicts Tc to be the mean of the values in the train-
ing set (1.72 K) would result in a mean absolute error of 6.07 K.
For comparison, the machine in Ref. [26] had an error of 1.84 K
for a mean value of the training set of 2.72 K. We attribute this
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notable improvement to the substantial expansion of the training
set, which was around ten times larger than the dataset used in
Ref. [26].

We note that our value is just an estimation, as DS-B is bi-
ased by the choice by the machine model of systems with Tc
larger then 5 K. A more statistically robust estimate of the error
is the cross-validation error during training. Our best machine
predicted, at the same time, the transition temperature, 𝜔log,
and 𝜆. As such, the cost function used to train the machine was
the sum, with equal weights, of the errors in the three quantities.
The calculated individual contributions for the cross-validation
error are 1.212 ± 0.085 for Tc 0.105 ± 0.003 for 𝜆, and 23.166 ±
0.994 for 𝜔log. As we can see, the cross-validation values are lower
than the errors obtained for DS-B, which is understandable since
the target distribution is skewed towards higher values of 𝜆, 𝜔log
and Tc. While we acknowledge that the dataset DS-B is biased as
it was selected by the machine, we maintain the belief that the
error in this dataset yields valid insights, particularly in the re-
gion of higher Tc that is of greatest interest to us. As a result,
our model can now make robust predictions of superconducting
compounds solely based on their structural, compositional, and
ground-state properties.

The described workflow, consisting of multiple precision
steps, may appear complicated. However, given the inherent
computational complexity involved in the search for supercon-
ductors, it appears to us as the most viable approach for acceler-
ating the discovery process.

3. Statistics

In this section, our focus lies on the training dataset (DS-A). The
quality of our ab initio simulations enables us to conduct a mean-
ingful statistical analysis of this set. Our primary objective is to
identify the key properties associated with high Tc. Most impor-
tantly, w e aim at estimating the rarity of finding conventional
superconductors with a given critical temperature. Here, w e do
not include the materials found by machine-learning in order to
reduce the bias in the statistical distributions. The DS-A set may
still possess some bias due to our initial selection process, with
the purpose of excluding non-superconducting systems and ma-
terials with excessive computational cost. However, these are rel-
atively minor issues and, we believe, that the dataset still holds
valuable statistical information.

3.1. Chemical Space

In Figure 2a we plot the distribution of chemical elements in
our DS-A. The boxes in gray represent either chemical elements
for which we did not have pseudopotentials available or the rare
gases that do not form metallic compounds at ambient condi-
tions. We would also like to note that we only have few com-
pounds with Ir in DS-A due to the problems with its pseudopo-
tential mentioned in Section 6. In general, the number of occur-
rences decreases with the period. The exceptions are the 3d ele-
ments Cr, Mn, Fe, etc. that have the tendency to form magnetic
compounds that were removed from the dataset. Non-metals are
also much less represented than metals, as most systems in DS-A

are intermetallic compounds. Also, we note the scarcity of com-
pounds with heavy alkali and alkali earth elements.

If we now look at the distribution of the chemical elements
present in compounds having TAllen-Dynes

c > 5 K we obtain a
completely different picture. As expected, many superconduct-
ing compounds contain hydrogen. However, the largest fraction
of superconducting compounds include early transition metals
with a peak appearance of Nb and Ti compounds. Moreover,
the ideal group for superconductivity appears to be group VI,
with 30% of Cr-, 18% of Mo-, and 16% of W-compounds having
TAllen-Dynes

c > 5 K, followed by group VII (Mn, Tc, Re) and group V
(V, Nb, Ta). However, the latter group has the advantage of being
less magnetic so superconductivity does not have to compete with
disrupting effects as spin fluctuations (which we do not consider
in this work). The occurrence of noble metals and non-metals
is very much reduced. However, as we will see in the following,
while not statistically prevalent, we do find compounds with ex-
treme values of Tc including these elements. Another interesting
fact relates to the second row of the periodic table: we find an in-
crease of high-temperature superconducting systems going from
B to C, arriving at a maximum for N (17% of its compounds hav-
ing TAllen-Dynes

c > 5 K), and then decreasing for O and F. This be-
havior is not mirrored in the third row where the ideal element for
superconductivity is sulphur (19% with TAllen-Dynes

c > 5 K). This
indicates that nitrogen and sulphur might be very favorable tar-
gets for the design of thermodynamically stable high-Tc conven-
tional superconductors, better than the well-known B and C.

The presence of non-metallic elements is, at room pressure,
linked with the formation of strong covalent bonds. Often this
type of bonds leads to insulating or semiconducting systems.
However, when covalent bonds occur in metallic compounds they
may lead to strong electron–phonon coupling (if the Fermi level
states are part of those bonds). This mechanism is responsible
for superconductivity in MgB2 as discussed in Pickett’s seminal
paper.[42] Likely this is the only conventional mechanism which
is able to support high critical temperatures at room pressure,
therefore the evidence that H, N, C, O containing materials lead
to the highest Tc.

3.2. Superconducting Properties

In Figure 3, we plot histograms of the electron–phonon and
superconducting properties, as calculated in our DS-A dataset.
Due to the large amount of compounds, the histograms are very
smooth, in contrast to results for Heusler or anti-perovskite com-
pounds only.[24,25]

In panel (a) we see that the distribution of values of 𝜆 is, as ex-
pected, very asymmetric, with a maximum value at around 0.25
and with a fat tail that extends well beyond 𝜆 = 1 (see inset). The
mean value of the distribution 𝜆mean = 0.37) is in very good agree-
ment with the mean value found for Heuslers (𝜆mean = 0.30) and
anti-perovskites (𝜆mean = 0.36). Surprisingly, the histogram can
be fit by a lognormal distribution, allowing us to easily calculate
probabilities. Note that, strictly speaking, these are conditional
probabilities reflecting any residual bias present in the choice
of materials contained in the dataset of Ref. [33, 34], and of our
choices detailed in Section 2. With this in mind, we find that the
probability to find a material with 𝜆 greater than 0.5 is 19.6%,
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Figure 2. Periodic table with the number of occurrences of each chemical for a) all compounds in DS-A and b) compounds in DS-A with a TAllen-Dynes
c

larger than 5 K.
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Figure 3. a) Histogram of the electron–phonon coupling constant 𝜆 with bins of width 0.05. The red curve is a fit to a lognormal distribution f (x, s) =
1

sdx
√

2𝜋
exp(− log2(y)

2s2 ), with y = (x − x̄)∕d, yielding the parameters s = 0.433, x̄ = −0.0618, and d = 0.392; b) Histogram of the logarithmic averaged phonon

frequency 𝜔log with bins of width 20 K; The red curve is a fit to a lognormal distribution with parameters s = 0.276, x̄ = −26.3, and d = 246; c) Histogram
of the values of the transition temperature Tc with bins of width 1.5 K. Note the logarithmic scale on the y-axis. The red curve is a fit, performed for
entries with Tc > 1.5 K, of an exponential distribution exp (− y)/d, yielding x̄ = 1.50 and d = 3.72. The fits were performed with scipy.[43]
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greater than 0.75 is 4.5%, and greater than 1.0 is 1.0%. We note
that if we zoom the plot in the region of the tail, we find many
more compounds with large values of 𝜆 than expected from the
distribution. However, we cannot use this fact as an evidence for
the existence of a fat, Pareto tail, as many of these large values of
𝜆 come from false positive materials with soft modes.

The histogram of 𝜔log is shown in Figure 3b. As expected by
the distribution of atomic masses, almost all materials exhibit
𝜔log between around 100 and 400 K, with a maximum of around
200 K. The mean of the distribution is 229 K, again comparing
well to the one of Heusler (190 K) and anti-perovskite (234 K)
compounds. Not surprisingly, the rare cases of very large 𝜔log
shown in the inset of Figure 3b are all compounds with light
atoms like H. This distribution can also be fitted by a lognormal
curve, although the quality of the fit is somewhat inferior to the
one of 𝜆. This may be related to the cutoff in ΘD used to select
the materials, that could lead to a artificial decrease of materials
with small 𝜔log.

Finally, in panel (c) of Figure 3, we depict the distribution
of values of Tc calculated from the Allen-Dynes formula. We
can observe that the large majority of compounds is not super-
conducting, or exhibits a very small (<1.5 K) transition tem-
perature. For higher Tc the number of compounds decreases
exponentially until around 20–25 K, but a few outliers can be
found with higher transition temperatures. Unfortunately, most
of these outliers turn out to be false positives with soft phonon
modes. These results are very much in line with the old as-
sumption that conventional superconductivity is limited to about
30 K. In fact, while nothing prevents phononic superconduc-
tors to reach much higher critical temperatures, these cases ap-
pear to be extremely rare, at least within the restriction of be-
ing at ambient pressure, excluding anisotropy effects and con-
sidering only systems that are stable or close to thermodynamic
stability.

The exact probabilities of higher critical temperatures are dif-
ficult to estimate. In our DS-A set only two exceed 40 K (with our
Eliashberg estimation), which leads to a probability of 0.03%. Us-
ing the lognorm fit of the electron–phonon coupling and of the
phonon frequencies, and assuming the values of the three param-
eters of the Allen-Dynes equation to be uncorrelated, the Allen-
Dynes formula predicts that the decrease of probability with Tc
is almost exponential. However the lognorm fit is not very pre-
cise at extreme values (as shown by the insets in Figure 3) and
extreme values of Tc do arise from these deviations from the ex-
ponential tail.

On the other hand, we find a significant number of supercon-
ductors in the 20 to 30 K range of Tc, in the order of 0.2% to 0.5%
of the materials in DS-A. Superconductors within this range of Tc
may not represent a technological game changer but could still be
valuable for specific applications if superconductivity is accompa-
nied by other desirable properties, like abundance of the atomic
species, ductility, and high critical fields and currents.

4. Extreme Compounds

As discussed in Section 2 the training dataset DS-A is used to
build machine learning models and predict new superconduc-
tors. The most interesting predictions (following the criteria de-

tailed in Section 2) are validated from first principles and col-
lected into the dataset DS-B.

In this section, we explore all compounds in DS-A and DS-B
that exhibit exceptionally high values of Tc. For our analysis of
specific materials, we rely on calculations conducted using the
high-precision setting (see Section 6), and we determine Tc us-
ing the isotropic Eliashberg equation. It is worth noting that the
high-precision calculation involves substantial computational ef-
fort. In addition, we have chosen three cases of extreme interest
to be analyzed by a cutting-edge SCDFT methodology, including
anisotropy and ab initio Coulomb interactions.

Some of the compounds in DS-A, such as KB6,[45] NbC,[46]

MgB2,[4] NbB2, and TaB2,[47] RuO2,[26] etc., are known supercon-
ductors or have already been proposed in the literature as super-
conductors. On the other hand, some of the materials in DS-B,
once computed with the high-precision setting, turn out to be un-
stable or non-superconducting. A selection of the most promis-
ing compounds, that we found with the highest values of Tc or
including chemical elements unusual in conventional supercon-
ductors, is listed in Table 1. This table includes a set of materials
that our methodology has predicted that could be synthesizable
valuable superconductors. In the sections below, we discuss these
materials grouping them into families. Further information con-
cerning their electronic and phononic band structures and the
electron-phonon coupling is given in the Supporting Informa-
tion.

4.1. Nitrides

Table 1 contains a large number of nitride compounds with high-
Tc. Above 20 K, we find LiMoN2 (at an incredible TEliashberg

c =
46 K), ScMoN2 (TEliashberg

c = 30 K), and LiTcN2 (TEliashberg
c = 28 K).

Due to the relevance of this finding, LiMoN2 is studied in de-
tail in the following. Additionally, we have identified a series
of systems with similar chemical compositions that crystallize
in the 𝛾-LiBO2 (chalcopyrite) structure. Several nitrides adopt-
ing this structure have been synthesized in the past, including
MgGeN2,[48] CaGeN2,[49] LiPN2,[50] and NaPN2.[51] Furthermore,
other AIIBIVN2 compounds have been produced in the related 𝛽-
NaFeO2 phase, such as BeSiN2,[52] MgSiN2,[53] MgGeN2,[53] and
ZnGeN2.[54]

The nitride chalcopyrite compound with the highest transition
temperature that we have discovered is LiTcN2. While this com-
pound is thermodynamically stable, its practical applications are
limited due to the presence of the radioactive chemical element
Tc. Interestingly, the Fermi energy resides in a valley of the den-
sity of states, suggesting that Tc can be enhanced through dop-
ing with either electrons or holes. The electron–phonon coupling
constant 𝜆 is calculated to be 1.33, with the majority of the con-
tribution stemming from the acoustic and first optical phonons
below 24.8 meV. With an electronic logarithmic average 𝜔log of

241 K, this results in a critical temperature of TEliashberg
c = 28 K.

It is worth mentioning that LiMoN2 is also dynamically stable
in the chalcopyrite structure, with an energy only 56 meV/atom
above the convex hull. However, the superconducting critical
temperature decreases compared to the trigonal phase. For
LiMoN2 in the chalcopyrite structure, we find TEliashberg

c = 22 K,
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Table 1. Calculated superconducting properties with the high-precision
settings. We present the chemical formula, the space group number (Spg),
the number of atoms in the primitive unit cell (NSites), the distance to
the convex hull Ehull (calculated as in Ref. [44], in meV/atom), 𝜔log (in
K), 𝜆, and the transition temperature calculated from the solution of the

isotropic Eliashberg equation (TEliashberg
c in K). The transition temperature

was obtained with 𝜇* = 0.10.

Formula Spg NSites Ehull 𝜔log 𝜆

TEliashberg
c

LiMoN2 160 4 8 268.6 1.777 46.3

LiPdH2 166 4 101 531.8 0.981 43.2

HPd 225 2 35 342.5 1.239 37.4

LiTcN2 122 8 0 241.4 1.325 28.4

NaTcN2 122 8 0 260.7 1.211 27.4

ZrH3 139 4 94 363.4 0.967 24.9

V 229 1 5 204.6 1.329 24.9

Nb3Zn 223 8 82 113.1 2.390 24.7

Cr4ReW 216 6 40 189.9 1.414 24.3

TiV2 139 3 41 213.6 1.258 24.0

TiV 129 4 46 190.9 1.369 24.0

LiMoN2 122 8 56 292.0 0.990 22.4

TiNb3 123 4 32 150.3 1.556 21.9

ZrTc2 227 6 29 149.9 1.443 20.2

Ti 225 1 62 204.9 1.117 19.7

LiVRu2 225 4 39 149.4 1.419 19.3

Cr3Os 223 8 21 239.7 0.987 19.1

MgB2 191 3 0 725.1 0.594 18.9

NbC 225 2 47 330.3 0.835 18.5

TiNbV4 216 6 36 148.3 1.275 17.7

Cr2Re 164 3 41 252.2 0.895 17.1

Nb 229 1 29 147.1 1.248 17.0

ScMoC2 166 4 49 288.0 0.864 16.9

MoH 225 2 0 241.4 0.931 16.8

KB6 221 7 0 803.3 0.559 16.8

Ti3Te 223 8 56 186.8 1.041 16.3

V6CoSi 200 8 23 262.9 0.849 16.2

RbB6 221 7 28 811.2 0.548 16.0

TaB2 191 3 0 297.0 0.816 15.4

CrH 225 2 0 310.6 0.767 15.3

Zr 225 1 40 132.9 1.236 14.7

Ti2H 166 3 45 171.1 1.005 14.1

Ti2W 164 3 22 196.5 0.898 13.4

ZrN 225 2 0 377.2 0.667 13.3

TaNb 221 2 6 162.1 1.001 13.3

Ti2Tc 139 3 9 211.5 0.831 12.6

KCdH3 221 5 41 686.4 0.533 12.3

Tc 194 4 10 213.7 0.808 12.2

Be4NbRh 216 6 47 311.5 0.701 12.2

LaRuH2N 123 5 16 337.0 0.690 12.0

RuO2 136 6 0 444.4 0.601 11.7

NbB2 191 3 0 394.7 0.625 11.5

ReTc 187 2 0 199.9 0.813 11.5

Ta 229 1 0 143.3 0.961 11.2

HfN 225 2 0 301.8 0.690 11.1

with an electron–phonon coupling constant of 𝜆 = 0.99 and an
electronic logarithmic average of 𝜔log = 292 K.

4.2. Hydrides

The remarkable increase in Tc observed in certain hydrogen-rich
materials under high-pressure, such as sulfur hydride (H3S)[7]

and lanthanum hydride (LaH10),[9] has attracted significant at-
tention. These materials can exhibit Tc values soaring as high as
250 K, rivaling or even surpassing those of unconventional super-
conductors. This remarkable achievement has sparked enthusi-
asm within the scientific community. However, it is important to
note that the practical application of these materials is hindered
by the exceedingly high pressures (over 100–200 GPa) required
to stabilize them. Our list of compounds with high-Tc at ambient
pressure includes several hydride and hydrogen-containing ma-
terials.

The compound with the highest transition temperature
among them is LiPdH2. In the Li-Pd-H ternary phase diagrams,
we have experimental knowledge of LiPdH[55] (a compound that
is not superconducting above 4 K[55]), and Li2PdH2.[56] Regarding
LiPdH2, we find that it has a thermodynamically stable tetrag-
onal phase. However, the compound with a high Tc is a trigo-
nal allotrope that crystallizes in the delafossite structure, slightly
higher in energy by 101 meV/atom with respect to the tetrago-
nal phase.

The electron–phonon coupling in this compound primarily
arises from interactions with high-energy optical phonons, pre-
dominantly falling within the range of 75 to 100 meV. The pres-
ence of these high-energy phonons is facilitated by the light mass
of hydrogen. Consequently, the com pound exhibits a significant
electron–phonon coupling constant of 𝜆= 0.98 and an exception-
ally high 𝜔log = 532 K. These characteristics contribute to a high

critical temperature of TEliashberg
c = 43 K.

The next hydride on our list is PdH, that exhibits a critical tem-
perature of TEliashberg

c = 37 K. Palladium hydride is a well-known
compound due to its anomalous isotope effect.[57–59] This effect
manifests as an increase in Tc when hydrogen is replaced by deu-
terium or tritium. The anomalous behavior of PdH has been at-
tributed to the presence of strong anharmonic effects,[60] which
also lead to a substantial reduction in the predicted Tc values ob-
tained using the harmonic approximation (utilized in this study)
to approximately 5 K.[61]

ZrH3 is a hypothetical compound situated 94 meV/atom above
the convex hull, indicating its thermodynamic propensity to de-
compose into ZrH2 and H2. The compound discovered within
our framework displays a tetragonal crystal structure, with zirco-
nium atoms occupying the center of a cuboctahedron, while hy-
drogen atoms are located at the vertices. An intriguing feature of
this material is that the DOS(EF) is predominantly derived from
the Zr states and these electrons are coupled with all phonon
modes. Interestingly, a substantial contribution to the electron–
phonon coupling constant of 𝜆 = 0.97 arises from the acoustic
modes, which are exclusively associated with Zr vibrations, lead-
ing to a TEliashberg

c = 24.9 K.
Finally, we would like to highlight KCdH3, a hydride perovskite

compound (see Figure 4). In this case, the bottom of the conduc-
tion band falls below the Fermi level at the R point of the Brillouin

Adv. Mater. 2024, 36, 2307085 2307085 (8 of 17) © 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH

 15214095, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adm

a.202307085 by M
PI 349 M

icrostructure Physics, W
iley O

nline L
ibrary on [15/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.advmat.de


www.advancedsciencenews.com www.advmat.de

Figure 4. Left: View of the crystal structure of KCdH3. The unit cell is shown in black, and the three lattice vectors are shown as arrows. K atoms are
in orange, Cd atoms are in blue and H atoms are in red. Center: Atom resolved electronic band structure and density of states which, in the selected
energy window, are dominated by Ti states. Right: Atom resolved phonon band structure and density of states. The width of the green shade behind
the phonon band structure is proportional to the electron–phonon coupling of the corresponding phonon mode. In the rightmost panel are shown the
Eliashberg function 𝛼2F(𝜔) and the integration curve of the electron–phonon coupling 𝜆(𝜔). Note that the data depicted in this figure was obtained with
material-specific convergence parameters (see Experimental Section), and is therefore slightly different from the values presented in Table 1.

zone, while the top conduction band is slightly above the Fermi
level at the X point. Consequently, the Fermi surface exhibits both
electron and hole pockets, with the Fermi level residing in a steep
shoulder of the density of states. This material appears to have
an interesting superconducting state, so we decided to study it
with the fully anisotropic SCDFT approach (see Section 6). The
hole pocket provides a Fermi surface sheet (see Figure 5) located
near the X point and has mixed Cd-H character, carrying about
75% of the total DOS. The nearly spherical electron pocket arises
from a pure Cd band and is located at the R-point contributing to
about 25% of the DOS. However both Fermi surface pockets are
quite small therefore the intraband electron–phonon coupling
only comes from low q phonons. These have weak matrix ele-
ments and can not sustain superconductivity. Stronger coupling
comes mostly from large q phonons via an interband scattering.
Particularly important is the lowest hydrogen optical branch (ro-
tations of the CdH3 octahedra) of the phonons modes around the
M and R points. The strong coupling is also responsible for an
evident Kohn anomaly at the M point (see Figure 4). Clearly, ow-
ing to the different DOS, the interband scattering mechanism is
particularly advantageous for the low DOS electron band that has
a coupling about twice that of the hole pocket. It is crucial to note
that this points to the fact that Tc is highly sensitive to the pre-
cise position of the Fermi level. In our most precise calculations
using SCDFT, we estimate a critical temperature of 23.4 K, twice
as large as the Eliashberg calculations in Table 1. The reason for
this discrepancy is not only due to critical convergence aspects
but also to the role of superconducting anisotropy that raises Tc
by about 5K.

4.3. Intermetallics

We find a wealth of intermetallic materials at the top of
our list. Among these, a significant number belong to well-
known families of superconducting compounds, such as the
A15 and C15 families, or are ternary generalizations of
them.

Until the advent of the high-Tc ceramics in 1986, the super-
conductor with the highest known Tc belonged to the A15 fam-
ily (Nb3Ge with a Tc of 23.2 K). Although the binary phases of
this family have been extensively investigated, the chemical space
of ternary compounds is relatively unexplored. A15 compounds
are cubic with the Cr3Si structure type. There are several possi-

bilities to generate ternary phases based on this prototype. For
example, by varying the chemical species in the 2a Wickoff posi-
tions one can generate materials such as Nb6AlSi,[62] AlSiMo6,[63]

V6GeOs,[64] etc. It is also possible to populate the 6c positions with
two different kinds of atoms as in V2FeGe[65] or in (NbV)3Si2.[62]

In Table 1, we find several A15 compounds, such as Nb3Zn
with a Tc = 24.7 K, Cr3Os with a Tc = 19.1 K, or Ti3Te with a Tc
= 16.3 K. We also find V6CoSi that is a ternary A15 variant with
a Tc = 16.2 K, and many more of those systems can be found in
Table SIV in the Supporting Information. It is worth noting that
we did not discover any high-Tc systems adopting the structure
of V2FeGe or (NbV)3S2.

We discuss in more detail Ti3Te (see Figure 6) due to its uncon-
ventional chemical composition, specifically the inclusion of Te, a
chemical element rarely found in high-Tc conventional supercon-
ductors. In this compound, the Fermi level occupies a relatively
flat region of the DOS, predominantly composed of Ti states. The
acoustic modes and the three lowest optical modes extend up to
approximately 15.5 meV, with a significant hybridization between
the vibrations of Ti and Te. As expected, the higher energy opti-
cal states primarily involve the lighter element, Ti. The electron–
phonon coupling appears to be stronger at large q values, how-
ever all branches contribute significantly to the value of 𝜆 = 1.0,
which, combined with 𝜔log = 187 K, results in a Tc = 14.8 K, as
estimated from SCDFT. The estimation is not far from the 16.3 K
obtained with isotropic Eliashberg theory and 𝜇*=0.10. However
the SCDFT estimation accounts both for the anisotropy of the
electron–phonon coupling, which actually increases Tc by about
2 K and uses the ab initio calculated electron–electron interaction
which, as is often the case in transition metals, is quite strong
(𝜇=0.4 and 𝜇* ≃ 0.15). The superconducting gap on the Fermi
surface is shown in Figure 5b. The gap distribution is peaked at
a value of 2.4 meV featuring a large tail that reaches 3.1 meV on
the cylindrical Fermi surface around the RM symmetry line.

The binary Laves phases, characterized by a cubic C15 struc-
ture like V2Hf, exhibit a moderate Tc of approximately 10 K.
Ternary variations[66] can be introduced through various ap-
proaches, resulting in compounds such as Mg2SiNi3 (possess-
ing trigonal symmetry) or MgCu4Sn (exhibiting cubic symme-
try). Some of these compounds have been found to supercon-
ducting, such as Mg2SiIr3 that displays a Tc of 7 K, or Li2Si3Ir
that exhibits a Tc of 3.8 K.[67]

At the top of Table 1 with the cubic C15 structure we find
ZrTc2 with a Tc = 20.2 K, and a couple of ternary variants of this
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Figure 5. Fermi surfaces and gap distributions for three selected compounds. The coloring of the Fermi surface indicates the superconducting gap, as
shown in the colorbar. The gray curves are gap distribution functions, defined as histograms of the superconducting gap at the Fermi energy. Calculations
are performed at high precision using fully anisotropic SCDFT.

Figure 6. Left: View of the crystal structure of Ti3Te. The unit cell is shown in black, and the three lattice vectors are shown as arrows. Ti atoms are in
blue, Te atoms are in red. Center: Atom resolved electronic band structure and density of states which, in the selected energy window, are dominated
by Ti states. Right: Atom resolved phonon band structure and density of states. The width of the green shade behind the phonon band structure is
proportional to the electron–phonon coupling of the corresponding phonon mode. In the rightmost panel are shown the Eliashberg function 𝛼2F(𝜔)
and the integration curve of the electron–phonon coupling 𝜆(𝜔). Note that the data depicted in this figure was obtained with material-specific convergence
parameters (see Experimental Section), and is therefore slightly different from the values presented in Table 1.
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Figure 7. Left: Two views of the crystal structure of LiMoN2. The unit cell is shown in black, and the three lattice vectors are shown as arrows. Li atoms are
in red, Mo atoms are in green and N atoms in blue. This structure can be pictured as consisting of MoN2 layers intercalated with Li. Center: Atom resolved
electronic band structure and density of states. Right: Atom resolved phonon band structure and density of states. The width of the yellow shade behind
the phonon band structure is proportional to the electron–phonon coupling of the corresponding phonon mode. In the rightmost panel are shown the
Eliashberg function 𝛼2F(𝜔) and the integration curve of the electron–phonon coupling 𝜆(𝜔). Note that the data depicted in this figure was obtained with
material-specific convergence parameters (see Experimental Section), and is therefore slightly different from the values presented in Table 1.

structure such as Cr4ReW with a Tc = 24.3 K, TiNbV4 with a Tc =
17.7 K, or TiV4Mo with a Tc = 8.6 K. Many more systems of this
family can be found in Table SIV (Supporting Information). As an
example, at the Fermi level of TiV4Mo, we find states with mainly
V character and much smaller Ti and Mo character. The Fermi
level in this compound is on a shoulder of the DOS (while in
TiNbV4 it is essentially at the maximum of the peak). All phonon
modes contribute to 𝜆, with the largest contribution coming from
the optical modes between 12.5 and 30.0 meV. This leads to a 𝜔log
= 217.9 K and 𝜆 = 0.68, yielding Tc = 8.6 K.

Finally, we would like to refer to a series of Ti–V compounds
with rather high transition temperatures such as TiV2 (Tc = 24 K),
TiV (Tc = 24 K), and even the elementary substance V (Tc =
24.9 K). Unfortunately, these transition temperatures are cer-
tainly too high due to the neglect of spin fluctuations that are
well-known to play an important role in Ti–V compounds.[68–70]

4.4. LiMoN2

LiMoN2 is a material that was overlooked in the search for su-
percondutors. It was synthesized for the first time in 1992 by
Elder and coauthors,[71] that were looking for nitride counter-
parts to the high-Tc ceramics, since N−III is the ion most similar
to O−II with respect to size, polarizability, and electronegativity.
This compound is a member of a family of layered nitrides that
also includes MgMoN2,[72] MnMoN2 and FeWN2,[73] MnWN2,
NiWN2 and CoWN2,[74] LiWN2,[75] CaTaN2,[76] CaNbN2,[77]

NaTaN2, and NaNbN2,[78] SrZrN2, and SrHfN2,[79] SrTiN2,[80]

CuNbN2,[81] LiSrGaN2,[82] CrWN2,[83] CuTaN2,[84] BaZrN2,[85]

BaHfN2, BaZr1 − xHfxN2.[86] From these, CaTaN2 and CaNbN2 are
known to be superconductors, with Tc of ≈ 8.2 K and ≈ 14 K,
respectively.[76,87] Note that these two compounds were also found
by our methodology.

The structure of LiMoN2 is depicted in the left panel of Figure 7
and can be conceived as being composed of MoN2 layers interca-
lated by Li. Interestingly, the MoN2 layers are isostructural to the
2D transition-metal dichalcogenides, and can be obtained by re-
placing S→N in MoS2. This leads, of course, to a charge destabi-
lization, that is compensated by the extra electron from Li, lead-
ing to a metallic state. Of course, intercalating a divalent atom
such as Mg leads to a semiconducting ground-state[72] where the
two electrons fill the band formed by the lowest dz2 orbitals.[88]

It is true that are striking structural similarities between
LiMoN2 and other intercalated compounds such as graphite (that
when intercalated with Ca reaches transition temperatures above
10 K[89,90]). However, a closer look reveals that the separation be-
tween the opposing N sheets is smaller than the in-plane separa-
tion, suggesting that there is substantial direct bonding between
opposing N layers.[91] Furthermore, an analysis of the electronic
structure shows that LiMoN2 is in fact a 3D metal.[87,91] As a 2D
band structure (characteristic of the high-Tc ceramics or of MgB2)
was seen as an essential requirement for high-temperature su-
perconductivity, LiMoN2 was quickly dismissed after the initial
synthesis as not being interesting.[87]

The electronic band-structure of LiMoN2 is depicted in the cen-
ter panel of Figure 7, together with the atom-resolved and to-
tal density of electronic states. We will keep the description of
the electronic properties of LiMoN2 brief, as they have already
been discussed in Refs. [87, 91]. There are two bands crossing
the Fermi level that are composed of d-states of Mo strongly hy-
bridized with p-states of N. There is a large dispersion of the
bands in the Γ–T direction, perpendicular to the basal planes, in-
dicating the 3D character of the metal. We can see virtually no
contribution of Li to the density-of-states indicating that these
atoms are fully ionized. Finally, the Fermi level lies on a very large
peak of the density-of-states, a fact that is often associated to su-
perconductivity.

The phonon dispersion is plotted on the right panel of Figure 7.
The material is stable dynamically, with three very different
sound velocities showing the marked anisotropy of the com-
pound. The three acoustical branches are essentially composed
of Mo vibrations, as expected by the larger mass of Mo with re-
spect to Li and N. The Li vibrations contribute mostly to the op-
tical branches between 25 and 42 meV and have a dispersion-
less Einstein mode at 50 meV. The high-lying phonon branches
until 95 meV are to a large extent composed of N vibrations.
This is somewhat surprising in view of the mass difference be-
tween Li and N, and attests to the strength of covalent nitrogen
bonds in the structure. Along the S-Γ line, we observe an in-
cipient phonon instability corresponding to an in plane charge
density wave distortion (CDW). An detailed analysis shows that
the frequency of this CDW mode is numerically very unstable,
with the mode softening at low electronic temperatures. The
phonon frequencies remain, however, real in our most precise
calculations.
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Also in Figure 7, we show the Eliashberg function 𝛼2F(𝜔)
and electron–phonon coupling constant 𝜆(𝜔) of LiMoN2. We
see that almost all phonon branches (with the exception of the
last ones) interact very strongly with the electronic states of Mo
and N. As such the plot for 𝛼2F(𝜔) follows the features of the
Mo and N phonon density-of-states until around 55 meV. Ob-
viously, the Li vibrations do not couple to the electrons, as the
bands at the Fermi level do not have any Li s-character. The
final value of the electron–phonon coupling constant is 𝜆 =
1.95. This is a very large value, on par with the best conven-
tional superconductors known to date, which are the high pres-
sure hydrides (for which 𝜆 ≈ 2). As a comparison MgB2, the
best phononic room pressure superconductor, has a coupling
of 𝜆 ≈ 0.7.

One should observe that the Fermi level is placed near a steep
peak in the density of states, implying that the large coupling
is, in part, caused by a large density of electronic states. There-
fore, the value of 𝜆 can be misleading, as superconductivity arises
from a broad region with a width of many hundredths of elec-
tron volts. Moreover, the coupling is unimportant unless associ-
ated with stiff phonon modes. In fact, large values of 𝜆 are of-
ten associated with soft-modes and lattice instabilities which do
not necessarily lead to superconductivity. As seen in Figure 7
this is not the case for LiMoN2 where the logarithmic average
phonon frequency is ≈25 meV, which is small when compared
with the hydrides (where it can be higher than 100 meV) and
also smaller than for MgB2 (about 60 meV), but still quite large
as compared to most non-hydrogenic superconductors (13 meV
in NbSe2, 12 meV in Nb3Sn, 6 meV in Pb, 16 meV in Nb, for
example).

We predict a quite high critical temperature of approximately
40 K, similar to that of MgB2. This value is significantly smaller
than one would expect from a standard McMillan approach with
𝜇* = 0.10, that predicts Tc = 52 K. The reason is in part to be
ascribed to the strong variation of the density of states at the
Fermi level, which causes a rapid drop of the electron–phonon
coupling and, most importantly, a very strong Coulomb repul-
sion. The latter, similarly to the electron–phonon coupling, is in-
creased by the high density of states at the Fermi level. However,
it is weakly renormalized as the system has almost no states avail-
able between 1 and 3.5 eV above the Fermi level. A very large 𝜇*
= 0.18 would be needed, in an McMillan approach, to account for
such effects.

We should point out that a Fermi energy located at a peak in
the density of states suggests a possible incipient instability of
the system, and most importantly also implies that the predicted
value of Tc can depend considerably on the calculation parame-
ters and approximations. For example, changing the functional
to the standard Perdew-Burke-Ernzerhof approximation,[92] in-
creases slightly DOS(EF), and causes a phonon softening, leading
to an increase of Tc by almost 50%.

At zero temperature, the energy gap has values between 5
and 7 meV, with three gap regions. Anisotropy is remarkable
but superconductivity is largely sustained by inter-band electron–
phonon scattering, unlike the case of MgB2 where coupling
mostly occurs within B𝜎 orbitals. This leads to the fact that the
three gaps have similar values. Nevertheless, anisotropy has an
impact on Tc: calculations done assuming an isotropic coupling
yield a slightly smaller Tc of 35 K.

An important question is if the high value of Tc predicted here
can be realized experimentally. In our opinion this is mainly de-
pendent on the quality of the experimental samples. The ma-
jor problem seems to be related to disorder and incipient insta-
bilities. The original synthesis resulted in a 15% concentration
of LiMo anti-sites.[71] This can be understood as both Li and Mo
sites are sixfold coordinated with N and that the cation–N dis-
tances are similar.[91] In order to understand if the formation
of these defects is favourable, we computed their formation en-
ergy. We created a supercell of LiMoN2 with 200 atoms (using the
find_optimal_cell_shape routine from ASE[93]). This supercell
was fully relaxed using a 1 × 1 × 1k −point grid, with all the re-
maining parameters kept identical to the calculations done in the
manuscript. The total energy was then recalculated using a 3 × 3
× 3k −grid. We repeated this process for a supercell with the posi-
tions of one of the Li-Mo pair exchanged. From these, we obtained
a formation energy of ≈− 0.3 eV, which indicates that the forma-
tion of these defects is indeed favorable from a thermodynamic
point of view. This is in agreement with the experimental result
that finds the spontaneous formation of anti-sites.[71] Of course,
different synthesis processes may favor differently the formation
of these (or other defects).

One can argue[91] that disorder would decrease DOS(EF), with
a negative impact on superconductivity. On the other hand, it
was found that up to 64% of the Li could be deintercalated from
LiMoN2.[71] This could be used to lower the position of the Fermi
level, increasing the density-of-states at the Fermi level, and, in
a first approximation, increasing the superconducting transition
temperature. Furthermore, the fact that LiMoN2 is close to a
charge-density state can lead to structural deformations and con-
sequent decrease of DOS(EF). Other problems could arise from
the difficult in forming single-phase LiMoN2 and the presence of
secondary phases.[94]

5. Conclusion

We conducted an extensive investigation into conventional su-
perconductivity by combining state-of-the-art calculations of the
electron–phonon coupling with machine learning-accelerated
high-throughput techniques. To achieve this, we created a com-
prehensive dataset comprising over 8250 ab initio electron–
phonon calculations. This dataset represents a significant leap
forward, as it is at least one order of magnitude larger than any
previously available computational dataset for conventional su-
perconductors. Furthermore, our calculations exhibit a good level
of convergence, allowing us to identify intriguing superconduct-
ing materials and thoroughly examine the electron–phonon and
superconducting properties across the entire spectrum of sta-
ble compounds.

Our dataset served as a foundation for training a ma-
chine learning model, leveraging compositional, structural, and
ground-state properties as input features. Equipped with this
powerful machine learning model, we explored a materials space
encompassing approximately 200 000 metallic compounds. Our
goal was to identify all superconducting compounds predicted to
possess a Tc greater than 5 K. The model achieved a 70% suc-
cess rate in this task. For comparison, in our initial dataset, only
10% of the materials fell within this range. Considering the full
set of materials with calculated Tc greater than 5 K studied, 48%
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of these were suggested by the machine learning model (50%
if we consider materials with Tc > 10 K), while requiring seven
times less calculations. We believe this attests the effectiveness
of our approach.

Regarding the behavior observed across the materials space,
we discovered that both 𝜔log and 𝜆 appear to follow a lognor-
mal distribution. This distribution is asymmetric as these quan-
tities cannot be negative. However, the underlying reasons for
this distribution pattern remain currently unknown. This knowl-
edge enabled us to estimate that the likelihood of encountering
a metal with a 𝜆 value exceeding one, indicating a very strong
electron–phonon coupling, is approximately 1%. Consequently,
such compounds are rare occurrences within the materials space.
Assuming uncorrelated lognormal distributions for 𝜔log and 𝜆,
we observe a superexponential distribution of Tc values. How-
ever the presence of large 𝜆 values often arises from soft phonons
which lead to small 𝜔log values truncating the tail of the Tc dis-
tribution. In terms of probability to find superconductivity, our
analysis suggests that within the set of stable, metallic and non-
magnetic materials, there is around a 0.4% chance of Tc > 20 K,
and a 0.03% chance of superconductivity above 30 K. This finding
aligns well with the long-held prejudice that conventional super-
conductivity is limited to approximately this temperature range.
What we quantify here is that high Tc superconductivity with the
phononic mechanism is so rare, in stable compounds, that an un-
biased search is hopelessly inefficient and acceleration methods
are necessary.

We observe a series of regularities in what concerns the chem-
istry of the materials with higher values of Tc. When consider-
ing metallic elements, Ti and V from the 4th row, as well as
Zr, Nb, Mo, Tc, and Ru from the 5th row of the periodic table,
display favorable characteristics for superconductivity. Addition-
ally, many intermetallic compounds with high Tc values belong
to well-established families, such as the A15 or C15 structures,
or are ternary extensions of these. Despite an extensive explo-
ration of numerous systems, we did not discover any compound
of this nature surpassing a transition temperature of approxi-
mately 24 K. In fact, the most exceptional Tc values were found
in compounds containing non-metallic elements, including H,
N, O, and others. We identified 73 hydrides with Tc exceeding
5 K, as well as 45 nitrides, 31 carbides, and so on. It is worth em-
phasizing that our study also unveiled numerous superconduct-
ing compounds with unconventional chemical compositions or
unique crystal structures.

The compound with the highest superconducting transition
temperature in our study was the layered metal LiMoN2 with Tc ≈

38 K. This value of Tc can be understood by the extreme electron–
phonon coupling between the electrons participating in the very
strong covalent bonds within the MoN2 layers, with almost all
N and Mo phonon modes contributing equally to a value of 𝜆 =
1.9. The material exhibits three different superconducting gaps,
but, contrary to MgB2, superconductivity seems to arise mainly
from interband coupling. These results show that high-Tc super-
conductivity can exist in metallic layered nitride compounds and
call for a detailed experimental analysis of these materials, and in
particular of LiMoN2.

An important effect that was neglected in the present study
is anharmonicity. On the one hand anharmonicity can stabilize
some compounds that in the harmonic approximation are dy-

namically unstable. In our workflow these are false negatives
that we miss. On the other hand, anharmonic effects can alter
considerably the phonon frequencies, leading to a change of the
predicted values of Tc. The most widely known example of this
is PdH, where anharmonicity decreases the transition temper-
ature of almost 40 K to less than 10 K.[95] Clearly, these effects
are strongest for compounds with light elements, and in particu-
lar for hydrides. In order to gain a comprehensive understand-
ing of these effects, further investigations are necessary, such
as employing advanced theoretical methods like the stochastic
self-consistent harmonic approximation (SSCHA).[61,96] Unfortu-
nately, these methods are very costly from the numerical point of
view, and cannot be used in high-throughput studies.

One of the merits of employing the machine learning model
is its capacity to probe hitherto uncharted territories in search
of materials with high Tc. In this context this includes regions
of material space with lower symmetry and larger cell sizes. We
expect that the error of the machine is larger for this systems,
that are absent from the training set. However, we also expect
that including relatively few systems of this type in the training
set —in the spirit of transfer learning— will suffice for the ma-
chine to provide reliable predictions. This suggests that targeting
increasingly larger systems is an achievable goal. Another pos-
sible route to improve the reliability and efficiency of machine
learning models is to add physically relevant descriptors, such as
proposed, e.g., in Refs. [97, 98].

The synergy of machine-learning techniques and conventional
density-functional based approaches holds great potential for a
systematic exploration of the multinary phase diagram, enabling
the search for superconducting compounds at high tempera-
tures, and even room temperature. Furthermore, the availability
of more data will inevitably make machine learning models more
precise, in a virtuous cycle that will allow the community, in a
near future, to investigate conventional superconducting prop-
erties of all possible stable materials, both at ambient as well as
under pressure.

6. Experimental Section
Pseudopotentials: We used the Perdew-Burke-Ernzerhof for solids[99]

(PBEsol) pseudopotentials from the pseudodojo project,[100] specifically
the stringent, scalar-relativistic norm-conserving set. This pseudopoten-
tial table has been systematically constructed and validated in a series
of seven tests in crystalline environments, specifically the Δ-Gauge,[101]

Δ′-Gauge,[102] GBRV-FCC, GBRV-BCC, GBRV-compound,[103] ghost-state
detection, and phonons at the Γ-point.

The pseudodojo set includes most chemical elements of the periodic
table. Exceptions are lanthanides (although La and Lu are included) and
actinides. We noticed severe convergence problems with Ir, that made us
replace this pseudopotential by a previous version. For the cutoff ener-
gies, we used the maximum of pseudodojo’s high precision hint for the
elements in a given material.

Electron–Phonon: All density-functional calculations were performed
using the versions 6.8 and 7.1 of quantum espresso[36,37] with the
Perdew-Burke-Ernzerhof (PBE) for solids (PBEsol)[99] generalized gradi-
ent approximation.

Note that we did not use a U correction, that might be required for
some correlated materials to obtain a correct electronic structure, nor we
included the spin-orbit correction that might be relevant for some com-
pounds with heavier atoms. We also did not include van der Waals correc-
tions, that are however not expected to be relevant for the bulk compounds
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studied here. As mentioned before, all materials with non-zero magnetic
moments were removed from the dataset, so all calculations were per-
formed without spin-polarization. For every material we re-optimized the
structure that we obtained from the database.

Geometry optimizations were performed using uniform Γ-centered k-
point grids with a density of 1500 k-points per reciprocal atom. If this
results in an odd number of k-points in a given direction, the next even
number was used instead. Convergence thresholds for energies, forces,
and stresses were set to 1 × 10−8 a.u., 1 × 10−6 a.u., and 5 × 10−2 kbar, re-
spectively. For the electron–phonon coupling we used a double-grid tech-
nique, with the same k-grid used in the lattice optimization as the coarse
grid, and a k-grid quadrupled in each direction as the fine grid. For the q-
sampling of the phonons we used half of the k-point grid described above.
The double 𝛿-integration to obtain the Eliashberg function was performed
with a Methfessel–Paxton smearing of 0.05 Ry.

For the higher precision calculations, we repeated the previous steps
by changing: i) the initial k-point grid density was set to 3000 k-points per
reciprocal atom; ii) the k-grid used as the coarse grid was set to the dou-
ble of the k-grid used for the geometry optimization. Our tests demon-
strated that this adjustment is sufficient in most cases to replicate results
obtained with manually converged grids. As an illustrative example let us
consider MgB2, which presents an extreme convergence challenge. In the
normal precision setting, we obtained a Tc of 8.5 K, whereas the higher
precision calculation yields a Tc of 16.7 K, in close proximity to the re-
ported hand-converged values of 15.5 K[26] and 20 K.[104] Although the
higher precision settings do not ensure convergence, it is much more
probable that larger errors stem from other factors such as anharmonicity,
charge density waves, anisotropy, multi-band effects, etc. Unfortunately,
at the moment these aspects cannot be considered systematically in high-
throughput studies like this one.

One of the main problems that we encountered was related to imagi-
nary phonon frequencies. There are several aspects of this problem. First,
compounds often exhibit imaginary frequencies at Γ due to the breaking
of translation symmetry caused by numerical imprecision, either due to a
too low energy cutoff or too few k-points, for example. To circumvent this
problem, we accepted calculations where we encountered at most three
imaginary frequencies at Γ if the maximum imaginary frequency was be-
low 35i cm−1. Otherwise the compound was discarded. We also encoun-
tered a few systems exhibiting spurious soft modes due to insufficient k-
point sampling leading to instabilities. Finally, the q −point sampling may
miss some phonon instabilities in undersampled regions of the Brillouin
zone. All these problems lead to either false positive or false negative en-
tries in the dataset. The former were eventually detected in the high pre-
cision step of the workflow. The false negatives, and in particular those
compounds that the methodology labels as unstable, are unfortunately
overlooked. While some of these false negatives could be stabilized by
including, e.g., anharmonic effects, carrying out such computations be-
comes prohibitively costly, and we cannot at the moment afford the more
complex calculations to bypass this issue.

Superconductivity: The values of

𝜆 = 2∫
𝛼2F(𝜔)

𝜔
d𝜔 (1a)

log(𝜔log) = 2
𝜆 ∫

log(𝜔)
𝜔

𝛼2F(𝜔) d𝜔 (1b)

𝜔2
2 = 2

𝜆 ∫ 𝜔 𝛼2F(𝜔) d𝜔 (1c)

where 𝛼2F(𝜔) is the Eliashberg spectral function, are used to calcu-
late the superconducting transition temperature using the McMillan
formula[105,106]

TMcMillan
c =

𝜔log

1.20
exp

[
−1.04 1 + 𝜆

𝜆 − 𝜇∗(1 + 0.62𝜆)

]
(2)

and the Allen-Dynes modification[107] to it:

TAD
c = f1f2TMcMillan

c (3)

where the correction factors are

f1 =

{
1 +

[
𝜆

2.46(1 + 3.8𝜇∗)

]3∕2
}1∕3

(4a)

f2 = 1 +
𝜆2(𝜔2∕𝜔log − 1)

𝜆2 +
[
1.82(1 + 6.3𝜇∗)𝜔2∕𝜔log

]2
(4b)

The function 𝛼2F(𝜔) was also used to obtain Tc from the solution of the
isotropic Eliashberg equations.

We took arbitrarily the value of 𝜇* = 0.10 for all materials studied. We
note that this procedure is well defined for the McMillan’s and Allen-Dynes
formulas, but not for the Eliashberg equations. Indeed, these depend on
an extra parameter, the cutoff of the Coulomb interaction, and for which
we took the (rather arbitrary) value of 0.5 eV. In general, we found that

the transition temperature varies as TMcMillan
c < TAllen-Dynes

c < TEliashberg
c ,

although the differences are in most cases not large. Note, however, that
there are some outliers due to the presence of compounds with soft modes
in DS-A.

DFT for Superconductors: The density of states of LiMoN2 implies a
strong energy variation of the gap, and the band structure indicates the
likeliness of superconducting anisotropy (linked to the N and Mo orbital
character at the Fermi level). For this reason, to study superconductivity we
must adopt an anisotropic approach, accounting both for the anisotropy
of the Fermi surface and the energy dependence of the electronic states.
Presently, the only approach that can describe all these physical effects is
superconducting density-functional theory[16,17] (SCDFT). In this theory,
the only quantity we describe as isotropic is the Coulomb interaction, as
tests have shown that its anisotropy has no significant effect in the results.
We used the most recent SCDFT functional,[18] where the gap equation is
solved for the Kohn-Sham gap, while the physical superconducting gap is
computed from as a post processing step.

A strict energy cutoff of 104 Ry was used for LiMoN2 and phonons and
electron–phonon couplings were computed on a 12 × 12 × 12 and 6 × 6
× 6 grid for k- and q-points, respectively. These were interpolated to a set
of 80 000 k-points on the Fermi surface, which was used for the SCDFT
simulations.[108] For the calculation of the screened Coulomb interaction
we used the RPA approximation for the screening function, which was
computed on a 8 × 8 × 8 q-grid.

The same framework was used to study KCdH3 and TiTe3. For KCdH3
we converged the results using a 120 Ry cutoff, a 16 × 16 × 16 (8 × 8 × 8)
grid for k (q)-points for the calculation of the phonons and an 8 × 8 × 8
q-grid for the screening function. For TiTe3 we used a 120 Ry cutoff, an 8
× 8 × 8 (6 × 6 × 6) grid for k (q)-points for the calculation of the phonons
and a 6 × 6 × 6 q-grid for the screening function.

Machine Learning: We calculated the Debye temperature (ΘD) with the
formalizm developed in Ref. [109] that provides a connection between this
quantity and the elastic constants. To circumvent the calculation of the
elastic constants, a relatively costly operation within DFT, we decided to
use a machine learning model, namely the alignn network.[41] For train-
ing, we employed the database of elastic constants presented in Ref. [110]
from which we obtained a dataset of 10987 Debye temperatures. Due to
the relationship between ΘD and the elastic constants[109] we used the
same hyperparameters as the best alignn model trained for the bulk and
shear modulus present in the MatBench repository.[111] The error obtained
by the trained model in the test set was 25.3 K, while predicting the aver-
age of the train set (345.7 K) would result in an error of 133.2 K. A plot
depicting the results of this machine can be found in the Supporting In-
formation.
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Looking at MatBench,[111] we see that for datasets of similar size
to the superconducting data, the model that yields better results was
modnet.[40] We trained modnet using as targets, simultaneously, 𝜆, 𝜔log
and Tc with the error for each property weighted equally, as these were the
choices yielding the best results. Hyperparameters were optimized using
a grid search approach and fivefold cross-validation (see Supporting In-
formation for details on the grid search and optimized parameters). For
the final model we used the ensemble of the five models with smallest
cross-validation error.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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